Data-data dalam transaksi biasanya mengandung informasi berupa tanggal/date. Walaupun ada perbedaan sedikit dalam menyajikan format date di Excel seperti long atau short date. Mengolah data dengan format date tentu akan bermanfaat bila diolah dalam bentuk pivot table di Excel. Terkadang bagian marketing meminta pengolahan data bukan bersifat daily melainkan cummulative per bulan/tahun. Mengolah data dengan format date seperti menjumlah data berdasarkan data per bulan ataupun pertahun di excel butuh perlakukan khusus, seperti menerapkan function year(), month() kemudian diolah lagi.
Mengolah data dengan format date yang ditujukan untuk mendapatkan pivot data berupa cummulative berdasarkan bulan/tahun saja sebenarnya bisa dipermudah dengan menggunakan library zoo yaitu dengan memanfaatkan as.yearmon(). Bagaimana cara mengolah data tersebut untuk bagian marketing sehingga didapatkan insight / trend akan penjualan.
Contoh Mengolah data dengan format date yang nanti kita olah membutuhkan data harian yang berisikan 2 kolom saja yaitu tanggal dan penjualan. Pastikan untuk tipe kolom tanggal harus date pada excel!
Data Penjualan
Contents
tanggal | penjualan |
---|---|
15/03/2020 | 0 |
16/03/2020 | 0 |
17/03/2020 | 0 |
18/03/2020 | 0 |
19/03/2020 | 0 |
20/03/2020 | 0 |
21/03/2020 | 0 |
22/03/2020 | 0 |
23/03/2020 | 0 |
24/03/2020 | 1 |
25/03/2020 | 0 |
26/03/2020 | 0 |
27/03/2020 | 0 |
28/03/2020 | 0 |
29/03/2020 | 0 |
30/03/2020 | 0 |
31/03/2020 | 0 |
01/04/2020 | 1 |
02/04/2020 | 0 |
03/04/2020 | 0 |
04/04/2020 | 0 |
05/04/2020 | 0 |
06/04/2020 | 0 |
07/04/2020 | 0 |
08/04/2020 | 0 |
09/04/2020 | 0 |
10/04/2020 | 0 |
11/04/2020 | 0 |
12/04/2020 | 0 |
13/04/2020 | 0 |
14/04/2020 | 0 |
15/04/2020 | 1 |
16/04/2020 | 0 |
17/04/2020 | 0 |
18/04/2020 | 0 |
19/04/2020 | 0 |
20/04/2020 | 0 |
21/04/2020 | 2 |
22/04/2020 | 0 |
23/04/2020 | 0 |
24/04/2020 | 0 |
25/04/2020 | 0 |
26/04/2020 | 0 |
27/04/2020 | 0 |
28/04/2020 | 3 |
29/04/2020 | 0 |
30/04/2020 | 0 |
01/05/2020 | 0 |
02/05/2020 | 5 |
03/05/2020 | 1 |
04/05/2020 | 0 |
05/05/2020 | 0 |
06/05/2020 | 0 |
07/05/2020 | 9 |
08/05/2020 | 0 |
09/05/2020 | 0 |
10/05/2020 | 0 |
11/05/2020 | 0 |
12/05/2020 | 1 |
13/05/2020 | 3 |
14/05/2020 | 0 |
15/05/2020 | 1 |
16/05/2020 | 0 |
17/05/2020 | 0 |
18/05/2020 | 0 |
19/05/2020 | 4 |
20/05/2020 | 0 |
21/05/2020 | 2 |
22/05/2020 | 1 |
23/05/2020 | 2 |
24/05/2020 | 0 |
25/05/2020 | 0 |
26/05/2020 | 0 |
27/05/2020 | 0 |
28/05/2020 | 0 |
29/05/2020 | 0 |
30/05/2020 | 2 |
31/05/2020 | 0 |
01/06/2020 | 0 |
02/06/2020 | 0 |
03/06/2020 | 0 |
04/06/2020 | 0 |
05/06/2020 | 0 |
06/06/2020 | 3 |
07/06/2020 | 1 |
08/06/2020 | 0 |
09/06/2020 | 1 |
10/06/2020 | 0 |
11/06/2020 | 0 |
12/06/2020 | 0 |
13/06/2020 | 0 |
14/06/2020 | 4 |
15/06/2020 | 1 |
16/06/2020 | 1 |
17/06/2020 | 0 |
18/06/2020 | 0 |
19/06/2020 | 0 |
20/06/2020 | 0 |
21/06/2020 | 0 |
22/06/2020 | 0 |
23/06/2020 | 0 |
24/06/2020 | 0 |
25/06/2020 | 0 |
26/06/2020 | 0 |
27/06/2020 | 1 |
28/06/2020 | 0 |
29/06/2020 | 0 |
30/06/2020 | 1 |
01/07/2020 | 0 |
02/07/2020 | 2 |
03/07/2020 | 1 |
04/07/2020 | 0 |
05/07/2020 | 2 |
06/07/2020 | 0 |
07/07/2020 | 1 |
08/07/2020 | 2 |
09/07/2020 | 0 |
10/07/2020 | 5 |
11/07/2020 | 2 |
12/07/2020 | 1 |
13/07/2020 | 5 |
14/07/2020 | 0 |
15/07/2020 | 0 |
16/07/2020 | 2 |
17/07/2020 | 0 |
18/07/2020 | 2 |
19/07/2020 | 3 |
20/07/2020 | 0 |
21/07/2020 | 0 |
22/07/2020 | 10 |
23/07/2020 | 0 |
24/07/2020 | 0 |
25/07/2020 | 4 |
26/07/2020 | 0 |
27/07/2020 | 2 |
28/07/2020 | 6 |
29/07/2020 | 1 |
30/07/2020 | 2 |
31/07/2020 | 4 |
01/08/2020 | 0 |
02/08/2020 | 0 |
03/08/2020 | 4 |
04/08/2020 | 3 |
05/08/2020 | 4 |
06/08/2020 | 0 |
07/08/2020 | 2 |
08/08/2020 | 0 |
09/08/2020 | 0 |
10/08/2020 | 0 |
11/08/2020 | 1 |
12/08/2020 | 1 |
13/08/2020 | 0 |
14/08/2020 | 4 |
15/08/2020 | 26 |
16/08/2020 | 2 |
17/08/2020 | 0 |
18/08/2020 | 2 |
19/08/2020 | 2 |
20/08/2020 | 1 |
21/08/2020 | 0 |
22/08/2020 | 5 |
23/08/2020 | 3 |
24/08/2020 | 0 |
25/08/2020 | 7 |
26/08/2020 | 1 |
27/08/2020 | 5 |
28/08/2020 | 3 |
29/08/2020 | 0 |
30/08/2020 | 1 |
31/08/2020 | 4 |
01/09/2020 | 0 |
02/09/2020 | 3 |
03/09/2020 | 1 |
04/09/2020 | 0 |
05/09/2020 | 1 |
06/09/2020 | 0 |
07/09/2020 | 1 |
08/09/2020 | 6 |
09/09/2020 | 3 |
10/09/2020 | 1 |
11/09/2020 | 0 |
12/09/2020 | 1 |
13/09/2020 | 6 |
14/09/2020 | 4 |
15/09/2020 | 1 |
16/09/2020 | 1 |
17/09/2020 | 1 |
18/09/2020 | 0 |
19/09/2020 | 2 |
20/09/2020 | 1 |
21/09/2020 | 1 |
22/09/2020 | 1 |
23/09/2020 | 0 |
24/09/2020 | 0 |
25/09/2020 | 0 |
26/09/2020 | 3 |
27/09/2020 | 0 |
28/09/2020 | 4 |
29/09/2020 | 0 |
30/09/2020 | 0 |
01/10/2020 | 2 |
02/10/2020 | 6 |
03/10/2020 | 1 |
04/10/2020 | 1 |
05/10/2020 | 0 |
06/10/2020 | 7 |
07/10/2020 | 6 |
08/10/2020 | 3 |
09/10/2020 | 3 |
10/10/2020 | 11 |
11/10/2020 | 0 |
12/10/2020 | 1 |
13/10/2020 | 3 |
14/10/2020 | 7 |
15/10/2020 | 1 |
16/10/2020 | 1 |
17/10/2020 | 1 |
18/10/2020 | 1 |
19/10/2020 | 0 |
20/10/2020 | 0 |
21/10/2020 | 2 |
22/10/2020 | 0 |
23/10/2020 | 0 |
24/10/2020 | 7 |
25/10/2020 | 0 |
26/10/2020 | 0 |
27/10/2020 | 10 |
28/10/2020 | 4 |
29/10/2020 | 3 |
30/10/2020 | 2 |
31/10/2020 | 0 |
01/11/2020 | 0 |
02/11/2020 | 0 |
03/11/2020 | 10 |
04/11/2020 | 12 |
05/11/2020 | 3 |
06/11/2020 | 0 |
07/11/2020 | 5 |
08/11/2020 | 1 |
09/11/2020 | 2 |
10/11/2020 | 7 |
11/11/2020 | 4 |
12/11/2020 | 2 |
13/11/2020 | 10 |
14/11/2020 | 0 |
15/11/2020 | 0 |
16/11/2020 | 11 |
17/11/2020 | 1 |
18/11/2020 | 13 |
19/11/2020 | 2 |
20/11/2020 | 7 |
21/11/2020 | 4 |
22/11/2020 | 2 |
23/11/2020 | 14 |
24/11/2020 | 6 |
25/11/2020 | 3 |
26/11/2020 | 0 |
27/11/2020 | 1 |
28/11/2020 | 28 |
29/11/2020 | 0 |
30/11/2020 | 0 |
01/12/2020 | 1 |
02/12/2020 | 3 |
03/12/2020 | 9 |
04/12/2020 | 3 |
05/12/2020 | 21 |
06/12/2020 | 1 |
07/12/2020 | 2 |
08/12/2020 | 2 |
09/12/2020 | 17 |
10/12/2020 | 2 |
11/12/2020 | 24 |
12/12/2020 | 6 |
13/12/2020 | 1 |
14/12/2020 | 8 |
15/12/2020 | 34 |
16/12/2020 | 20 |
17/12/2020 | 27 |
18/12/2020 | 5 |
19/12/2020 | 50 |
20/12/2020 | 10 |
21/12/2020 | 2 |
22/12/2020 | 23 |
23/12/2020 | 9 |
24/12/2020 | 9 |
25/12/2020 | 40 |
26/12/2020 | 1 |
27/12/2020 | 24 |
28/12/2020 | 9 |
29/12/2020 | 3 |
30/12/2020 | 11 |
31/12/2020 | 26 |
01/01/2021 | 4 |
02/01/2021 | 4 |
03/01/2021 | 6 |
04/01/2021 | 24 |
05/01/2021 | 17 |
06/01/2021 | 28 |
07/01/2021 | 55 |
08/01/2021 | 3 |
09/01/2021 | 22 |
10/01/2021 | 15 |
11/01/2021 | 5 |
12/01/2021 | 42 |
13/01/2021 | 14 |
14/01/2021 | 21 |
15/01/2021 | 40 |
16/01/2021 | 10 |
17/01/2021 | 23 |
18/01/2021 | 22 |
19/01/2021 | 4 |
20/01/2021 | 15 |
21/01/2021 | 15 |
22/01/2021 | 49 |
23/01/2021 | 46 |
24/01/2021 | 12 |
25/01/2021 | 6 |
26/01/2021 | 4 |
27/01/2021 | 24 |
28/01/2021 | 14 |
29/01/2021 | 16 |
30/01/2021 | 53 |
31/01/2021 | 8 |
01/02/2021 | 34 |
02/02/2021 | 16 |
03/02/2021 | 16 |
04/02/2021 | 45 |
05/02/2021 | 14 |
06/02/2021 | 21 |
07/02/2021 | 3 |
08/02/2021 | 11 |
09/02/2021 | 17 |
10/02/2021 | 16 |
11/02/2021 | 36 |
12/02/2021 | 8 |
13/02/2021 | 23 |
14/02/2021 | 10 |
15/02/2021 | 1 |
16/02/2021 | 9 |
17/02/2021 | 3 |
18/02/2021 | 27 |
19/02/2021 | 31 |
20/02/2021 | 23 |
21/02/2021 | 28 |
22/02/2021 | 8 |
23/02/2021 | 5 |
24/02/2021 | 1 |
25/02/2021 | 18 |
26/02/2021 | 8 |
27/02/2021 | 17 |
28/02/2021 | 21 |
01/03/2021 | 12 |
02/03/2021 | 0 |
03/03/2021 | 0 |
04/03/2021 | 7 |
05/03/2021 | 24 |
06/03/2021 | 0 |
07/03/2021 | 0 |
08/03/2021 | 23 |
09/03/2021 | 10 |
10/03/2021 | 0 |
11/03/2021 | 1 |
12/03/2021 | 25 |
13/03/2021 | 11 |
14/03/2021 | 1 |
15/03/2021 | 3 |
16/03/2021 | 8 |
17/03/2021 | 15 |
18/03/2021 | 16 |
19/03/2021 | 6 |
20/03/2021 | 17 |
21/03/2021 | 10 |
22/03/2021 | 29 |
23/03/2021 | 3 |
24/03/2021 | 2 |
25/03/2021 | 20 |
26/03/2021 | 11 |
27/03/2021 | 13 |
28/03/2021 | 3 |
29/03/2021 | 24 |
30/03/2021 | 0 |
31/03/2021 | 5 |
01/04/2021 | 19 |
02/04/2021 | 10 |
03/04/2021 | 15 |
04/04/2021 | 2 |
05/04/2021 | 17 |
06/04/2021 | 5 |
07/04/2021 | 18 |
08/04/2021 | 25 |
09/04/2021 | 6 |
10/04/2021 | 5 |
11/04/2021 | 7 |
12/04/2021 | 24 |
13/04/2021 | 2 |
14/04/2021 | 0 |
15/04/2021 | 27 |
16/04/2021 | 5 |
17/04/2021 | 8 |
18/04/2021 | 25 |
19/04/2021 | 37 |
20/04/2021 | 8 |
21/04/2021 | 0 |
22/04/2021 | 41 |
23/04/2021 | 12 |
24/04/2021 | 24 |
25/04/2021 | 18 |
26/04/2021 | 8 |
27/04/2021 | 1 |
28/04/2021 | 19 |
29/04/2021 | 15 |
30/04/2021 | 31 |
01/05/2021 | 7 |
02/05/2021 | 1 |
03/05/2021 | 21 |
04/05/2021 | 12 |
05/05/2021 | 4 |
06/05/2021 | 35 |
07/05/2021 | 2 |
08/05/2021 | 12 |
09/05/2021 | 9 |
10/05/2021 | 11 |
11/05/2021 | 16 |
12/05/2021 | 14 |
13/05/2021 | 10 |
14/05/2021 | 11 |
15/05/2021 | 9 |
16/05/2021 | 0 |
17/05/2021 | 1 |
18/05/2021 | 1 |
19/05/2021 | 14 |
20/05/2021 | 26 |
21/05/2021 | 8 |
22/05/2021 | 9 |
23/05/2021 | 15 |
24/05/2021 | 1 |
25/05/2021 | 9 |
26/05/2021 | 3 |
27/05/2021 | 29 |
28/05/2021 | 15 |
29/05/2021 | 10 |
30/05/2021 | 12 |
31/05/2021 | 7 |
01/06/2021 | 16 |
02/06/2021 | 47 |
03/06/2021 | 25 |
04/06/2021 | 26 |
05/06/2021 | 41 |
06/06/2021 | 24 |
07/06/2021 | 49 |
08/06/2021 | 48 |
09/06/2021 | 43 |
10/06/2021 | 86 |
11/06/2021 | 54 |
12/06/2021 | 81 |
13/06/2021 | 59 |
14/06/2021 | 102 |
15/06/2021 | 136 |
16/06/2021 | 104 |
17/06/2021 | 144 |
18/06/2021 | 108 |
19/06/2021 | 176 |
20/06/2021 | 86 |
21/06/2021 | 71 |
22/06/2021 | 166 |
23/06/2021 | 165 |
24/06/2021 | 178 |
25/06/2021 | 242 |
26/06/2021 | 253 |
27/06/2021 | 192 |
28/06/2021 | 162 |
29/06/2021 | 276 |
30/06/2021 | 311 |
01/07/2021 | 297 |
02/07/2021 | 276 |
03/07/2021 | 275 |
04/07/2021 | 409 |
05/07/2021 | 212 |
06/07/2021 | 309 |
07/07/2021 | 300 |
08/07/2021 | 248 |
09/07/2021 | 317 |
10/07/2021 | 303 |
11/07/2021 | 280 |
12/07/2021 | 180 |
13/07/2021 | 409 |
14/07/2021 | 298 |
15/07/2021 | 352 |
16/07/2021 | 299 |
17/07/2021 | 323 |
18/07/2021 | 224 |
19/07/2021 | 111 |
20/07/2021 | 302 |
21/07/2021 | 109 |
22/07/2021 | 260 |
23/07/2021 | 238 |
24/07/2021 | 242 |
25/07/2021 | 183 |
26/07/2021 | 81 |
27/07/2021 | 253 |
28/07/2021 | 237 |
29/07/2021 | 183 |
30/07/2021 | 183 |
31/07/2021 | 194 |
01/08/2021 | 114 |
02/08/2021 | 89 |
03/08/2021 | 224 |
04/08/2021 | 131 |
05/08/2021 | 153 |
06/08/2021 | 148 |
07/08/2021 | 202 |
08/08/2021 | 95 |
09/08/2021 | 102 |
10/08/2021 | 116 |
11/08/2021 | 68 |
12/08/2021 | 166 |
13/08/2021 | 123 |
14/08/2021 | 106 |
15/08/2021 | 91 |
16/08/2021 | 63 |
17/08/2021 | 48 |
18/08/2021 | 47 |
19/08/2021 | 153 |
20/08/2021 | 73 |
21/08/2021 | 79 |
22/08/2021 | 40 |
23/08/2021 | 61 |
24/08/2021 | 47 |
25/08/2021 | 85 |
26/08/2021 | 52 |
27/08/2021 | 50 |
28/08/2021 | 71 |
29/08/2021 | 44 |
30/08/2021 | 36 |
31/08/2021 | 28 |
01/09/2021 | 46 |
02/09/2021 | 44 |
03/09/2021 | 40 |
04/09/2021 | 20 |
05/09/2021 | 28 |
06/09/2021 | 16 |
07/09/2021 | 11 |
08/09/2021 | 24 |
09/09/2021 | 27 |
10/09/2021 | 10 |
11/09/2021 | 13 |
12/09/2021 | 18 |
13/09/2021 | 20 |
14/09/2021 | 9 |
15/09/2021 | 5 |
16/09/2021 | 8 |
17/09/2021 | 14 |
18/09/2021 | 6 |
19/09/2021 | 11 |
20/09/2021 | 19 |
21/09/2021 | 10 |
22/09/2021 | 8 |
23/09/2021 | 11 |
24/09/2021 | 6 |
25/09/2021 | 8 |
26/09/2021 | 15 |
27/09/2021 | 11 |
28/09/2021 | 6 |
29/09/2021 | 19 |
30/09/2021 | 7 |
01/10/2021 | 1 |
02/10/2021 | 18 |
03/10/2021 | 4 |
04/10/2021 | 3 |
05/10/2021 | 6 |
06/10/2021 | 12 |
07/10/2021 | 4 |
08/10/2021 | 2 |
09/10/2021 | 12 |
10/10/2021 | 2 |
11/10/2021 | 2 |
12/10/2021 | 4 |
13/10/2021 | 7 |
14/10/2021 | 18 |
15/10/2021 | 1 |
16/10/2021 | 3 |
17/10/2021 | 3 |
18/10/2021 | 1 |
19/10/2021 | 0 |
20/10/2021 | 0 |
21/10/2021 | 5 |
22/10/2021 | 4 |
23/10/2021 | 2 |
24/10/2021 | 3 |
25/10/2021 | 1 |
26/10/2021 | 0 |
27/10/2021 | 3 |
28/10/2021 | 0 |
29/10/2021 | 0 |
30/10/2021 | 3 |
31/10/2021 | 2 |
Kita loading library serta baca data dalam format excel
library(openxlsx) library (dplyr) library(ggplot2) library(zoo) dat1 = openxlsx::read.xlsx('penjualan.xlsx')
Nanti kalian jangan terkejut ketika dat1$tanggal akan menyajikan angka integer yang merupakan date value. Pada dasarnya date value bisa kita ubah ke format short date menggunakan function as.Date() dengan origin = 1899-12-30
dat1$tanggal = as.Date(as.numeric(dat1$tanggal), origin = "1899-12-30")
Bagaimana R menangani date value/tanggal?
Variabel tanggal dapat menimbulkan tantangan dalam pengelolaan data. Ini berlaku dalam paket apa pun dan paket yang berbeda menangani nilai tanggal secara berbeda. Halaman ini bertujuan untuk memberikan ikhtisar tanggal dalam R–cara memformatnya, cara menyimpannya, dan fungsi apa yang tersedia untuk menganalisisnya.
Untuk variabel tanggal yang disimpan sebagai vektor angka, ada sedikit pekerjaan rumit yang harus dilakukan. Lihatlah beberapa angka dan lihat apakah ada pola yang jelas. Jika nilai numerik sebenarnya adalah nilai bulan, hari, dan tahun yang digabungkan tanpa pemisahan, seperti 20011010 untuk 10 Oktober 2001, maka nilai-nilai ini harus dikonversi ke string karakter (menggunakan as.character) dan kemudian diformat menggunakan tips di tautan di atas .
Jika nilai numerik menghitung hari yang telah berlalu sejak beberapa tanggal mulai, maka fungsi as.Date dapat digunakan dengan tanggal asal yang ditunjukkan. Jika kita perlu membaca nilai numerik yang mewakili tanggal dari Excel ke R, kita perlu memperhatikan bahwa tanggal Excel, ketika dikonversi ke bilangan bulat, dihitung dari 1 Januari 1900. Namun, Excel menggunakan 1 untuk mewakili asal ini, sedangkan R menggunakan 0 , jadi pertama-tama kita harus mengurangi 1 dari setiap nilai sebelum mengonversi. Selain itu, Excel secara keliru memperlakukan 1900 sebagai tahun kabisat, sehingga semua angka yang mewakili tanggal setelah 28 Februari 1900 salah bertambah 1, jadi kita perlu mengurangi satu dari tanggal yang jatuh setelah 28 Februari 1900. Setelah membersihkan angka, kita dapat menunjukkan tanggal asal Excel 1 Januari 1900 di as.Date.
itulah mengapa origin di R di set menjadi 30 Desember 1899
Ok sekarang pembahasan mengenai origin sudah selesai
Pivot year month
Sekarang kita akan melakukan pivot tabel berdasarkan bulan dan tahun yaitu jumlah kumulatif data penjualan berdasarkan tahun-bulan untuk mengetahui trend penjualan
g = dat1 %>% group_by(tahun.bulan=as.yearmon(tanggal)) %>% summarise(pengamatan = n(),jumlah=sum(penjualan)) #end
data g berisi pivot
tahun.bulan pengamatan jumlah <yearmon> <int> <dbl> 1 Mar 2020 17 1 2 Apr 2020 30 7 3 May 2020 31 31 4 Jun 2020 30 13 5 Jul 2020 31 57 6 Aug 2020 31 81 7 Sep 2020 30 42 8 Oct 2020 31 83 9 Nov 2020 30 148 10 Dec 2020 31 403 11 Jan 2021 31 621 12 Feb 2021 28 470 13 Mar 2021 31 299 14 Apr 2021 30 434 15 May 2021 31 334 16 Jun 2021 30 3471 17 Jul 2021 31 7887 18 Aug 2021 31 2905 19 Sep 2021 30 490 20 Oct 2021 31 126
Menampilkan plot
Mengolah data dengan format date kalau hanya sekedar tabel akan sulit dilihat seperti apa trend! oleh sebab tersebut kita butuh ploting data
p = ggplot(data=g,aes(x=as.factor(tahun.bulan),y=jumlah))+ geom_bar(stat='identity')+ labs(title = "Penjualan Mobil", subtitle = "Kumulatif Bulan-Tahun", caption = "Data source: https://softscients.com", x = "Bulan", y = "Jumlah", tag = "Merk Honda")+ theme(axis.text.x = element_text(angle = 45, vjust = 0.5, hjust=1)) p
Berikut tampilan Mengolah data dengan format date dengan kumulatif bulan-tahun
Nah kalau gini kan mudah dianalisis, daripada data harian yang terlalu banyak. Tentu bagian marketing akan banyak melakukan event atau promo2 di semester II pada tahun berikutnya. Karena penjualan mobil akan banyak promo diakhir tahun (maklum cash back tersebut merupakan potongan pajak yang diberikan pemerintah di akhir2 tahun, padahal ya harga mobil tidak turun sebenarnya, bagi pembeli diuntungkan beli mobil murah tapi ya resikonya ganti tahun depan maka mobil tersebut udah dianggap 1 tahun lalu bila dijual akan turun jauh)