×

Melatih Model Yolo5 untuk deteksi Objek

Melatih Model Yolo5 untuk deteksi Objek

286 Views

YOLO (You Only Look Once) adalah salah satu model deep learning yang digunakan untuk deteksi objek secara real-time. Sejak diperkenalkan oleh Joseph Redmon pada tahun 2015, YOLO telah berkembang pesat dengan berbagai versi yang lebih cepat dan akurat. Salah satu model yang populer saat ini adalah YOLOv5, yang dirilis oleh Ultralytics pada tahun 2020. YOLOv5 menawarkan performa yang lebih cepat dan ringan dibandingkan versi sebelumnya serta didukung oleh berbagai fitur yang membuatnya ideal untuk diterapkan pada banyak skenario.

Arsitektur YOLOv5

Arsitektur YOLOv5 didesain agar lebih efisien baik dari segi kecepatan inferensi maupun akurasi. Ada beberapa elemen penting yang menyusun arsitektur YOLOv5, antara lain:

  1. Backbone: Bagian ini bertanggung jawab untuk mengekstraksi fitur dari gambar. YOLOv5 menggunakan Cross Stage Partial Networks (CSPNet) sebagai backbone-nya, yang memungkinkan efisiensi dalam hal komputasi tanpa kehilangan akurasi yang signifikan.
  2. Neck: Setelah fitur diekstraksi oleh backbone, bagian “neck” bertugas untuk mengumpulkan informasi dari berbagai tingkatan resolusi gambar. Pada YOLOv5, fitur ini menggunakan PANet (Path Aggregation Network) untuk menggabungkan informasi multi-skala dan memperbaiki hasil deteksi untuk objek dengan ukuran yang berbeda-beda.
  3. Head: Bagian terakhir dari arsitektur ini digunakan untuk memprediksi kotak-kotak pembatas (bounding boxes), kelas objek, dan kepercayaan deteksi. Setiap objek akan diprediksi berdasarkan lokasi dan kelas yang sesuai.

Pada postingan kali ini, kita akan Melatih Model Yolo5 untuk deteksi Objek dengan kasus yang cukup sederhana yaitu deteksi wajah dengan ukuran gambar yang kecil saja yaitu 320 x 320.

Adapun kode yolov5 yang akan kita gunakan kita ambil dari https://github.com/ultralytics/yolov5 kode nya sangat lengkap mulai dari training sampai testing, kalian bisa menggunakan git clone untuk download nya. atau kalian bisa membaca dokumentasinya secara langsung https://docs.ultralytics.com/yolov5/#explore-and-learn

Download Dataset

Kita download dulu https://universe.roboflow.com/rlggypface/face-detection-zspaa/dataset/1 dengan ukuran gambar yaitu 320 x 320 pixel dan letakan di folder sebagai berikut

yolov5/datasets/face

didalamnya ada folder images dan labels

Membuat configurasi dataset

Untuk membuat configurasi dataset berupa file *.yaml akan kita beri nama face_config_dataset.yaml

yolov5/data/face_config_dataset.yaml

isinya sebagai berikut yang kita anggap sama untuk trainign dan validasinya.

path: datasets/face # dataset root dir
train: images # train images 
val: images # val images
test: # test images (optional)

# Classes
names:
  0: face

Membuat Configurasi Model

Configurasi model sudah ada beberapa contoh. Fleksibilitas model ini, ditambah dengan pilihan berbagai ukuran model (s, m, l, x), memungkinkan YOLOv5 untuk diadaptasi sesuai kebutuhan pengguna, baik untuk perangkat yang terbatas sumber dayanya maupun untuk sistem canggih dengan GPU yang kuat.

  1. yolov5l.yaml;
  2. yolov5m.yaml;
  3. yolov5n.yaml;
  4. yolov5s.yaml;
  5. yolov5x.yaml

kita hanya menggunakan yang dibawah ini saja yaitu

yolov5/models/yolov5m.yaml

isinya dari configurasi model diatas yaitu

# Ultralytics YOLOv5 🚀, AGPL-3.0 license

# Parameters
nc: 1 # number of classes
depth_multiple: 0.67 # model depth multiple
width_multiple: 0.75 # layer channel multiple
anchors:
  - [10, 13, 16, 30, 33, 23] # P3/8
  - [30, 61, 62, 45, 59, 119] # P4/16
  - [116, 90, 156, 198, 373, 326] # P5/32

# YOLOv5 v6.0 backbone
backbone:
  # [from, number, module, args]
  [
    [-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
    [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
    [-1, 3, C3, [128]],
    [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
    [-1, 6, C3, [256]],
    [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
    [-1, 9, C3, [512]],
    [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
    [-1, 3, C3, [1024]],
    [-1, 1, SPPF, [1024, 5]], # 9
  ]

# YOLOv5 v6.0 head
head: [
    [-1, 1, Conv, [512, 1, 1]],
    [-1, 1, nn.Upsample, [None, 2, "nearest"]],
    [[-1, 6], 1, Concat, [1]], # cat backbone P4
    [-1, 3, C3, [512, False]], # 13

    [-1, 1, Conv, [256, 1, 1]],
    [-1, 1, nn.Upsample, [None, 2, "nearest"]],
    [[-1, 4], 1, Concat, [1]], # cat backbone P3
    [-1, 3, C3, [256, False]], # 17 (P3/8-small)

    [-1, 1, Conv, [256, 3, 2]],
    [[-1, 14], 1, Concat, [1]], # cat head P4
    [-1, 3, C3, [512, False]], # 20 (P4/16-medium)

    [-1, 1, Conv, [512, 3, 2]],
    [[-1, 10], 1, Concat, [1]], # cat head P5
    [-1, 3, C3, [1024, False]], # 23 (P5/32-large)

    [[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
  ]

 

See also  Membuat Demo Deep Learning dengan web based application

Training Model

Jika sudah siap semua, kita lakukan training dengan kode berikut

python train.py --data 'face_config_dataset.yaml' --weights '' --cfg 'yolov5m.yaml'  --img 320 --rect --epochs 100

berikut output dari training diatas!

python train.py --data 'face_config_dataset.yaml' --weights '' --cfg 'yolov5m.yaml'  --img 320 --rect --epochs 100
train: weights=, cfg=yolov5m.yaml, data=face_config_dataset.yaml, hyp=data/hyps/hyp.scratch-low.yaml, epochs=100, batch_size=2, imgsz=320, rect=True, resume=False, nosave=False, noval=False, noautoanchor=False, noplots=False, evolve=None, evolve_population=data/hyps, resume_evolve=None, bucket=, cache=None, image_weights=False, device=, multi_scale=False, single_cls=False, optimizer=SGD, sync_bn=False, workers=8, project=runs/train, name=exp, exist_ok=False, quad=False, cos_lr=False, label_smoothing=0.0, patience=100, freeze=[0], save_period=-1, seed=0, local_rank=-1, entity=None, upload_dataset=False, bbox_interval=-1, artifact_alias=latest, ndjson_console=False, ndjson_file=False
remote: Enumerating objects: 5, done.
remote: Counting objects: 100% (5/5), done.
remote: Compressing objects: 100% (5/5), done.
remote: Total 5 (delta 0), reused 4 (delta 0), pack-reused 0 (from 0)
Membongkar objek: 100% (5/5), 4.22 kibibita | 719.00 kibibita/detik, selesai.
Dari https://github.com/ultralytics/yolov5
   12b577c8..f7322921  master     -> origin/master
github: ⚠️ YOLOv5 is out of date by 1 commit. Use 'git pull' or 'git clone https://github.com/ultralytics/yolov5' to update.
YOLOv5 🚀 v7.0-365-g12b577c8 Python-3.11.5 torch-2.3.0 CPU

hyperparameters: lr0=0.01, lrf=0.01, momentum=0.937, weight_decay=0.0005, warmup_epochs=3.0, warmup_momentum=0.8, warmup_bias_lr=0.1, box=0.05, cls=0.5, cls_pw=1.0, obj=1.0, obj_pw=1.0, iou_t=0.2, anchor_t=4.0, fl_gamma=0.0, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, flipud=0.0, fliplr=0.5, mosaic=1.0, mixup=0.0, copy_paste=0.0
Comet: run 'pip install comet_ml' to automatically track and visualize YOLOv5 🚀 runs in Comet
TensorBoard: Start with 'tensorboard --logdir runs/train', view at http://localhost:6006/

                 from  n    params  module                                  arguments                     
  0                -1  1      5280  models.common.Conv                      [3, 48, 6, 2, 2]              
  1                -1  1     41664  models.common.Conv                      [48, 96, 3, 2]                
  2                -1  2     65280  models.common.C3                        [96, 96, 2]                   
  3                -1  1    166272  models.common.Conv                      [96, 192, 3, 2]               
  4                -1  4    444672  models.common.C3                        [192, 192, 4]                 
  5                -1  1    664320  models.common.Conv                      [192, 384, 3, 2]              
  6                -1  6   2512896  models.common.C3                        [384, 384, 6]                 
  7                -1  1   2655744  models.common.Conv                      [384, 768, 3, 2]              
  8                -1  2   4134912  models.common.C3                        [768, 768, 2]                 
  9                -1  1   1476864  models.common.SPPF                      [768, 768, 5]                 
 10                -1  1    295680  models.common.Conv                      [768, 384, 1, 1]              
 11                -1  1         0  torch.nn.modules.upsampling.Upsample    [None, 2, 'nearest']          
 12           [-1, 6]  1         0  models.common.Concat                    [1]                           
 13                -1  2   1182720  models.common.C3                        [768, 384, 2, False]          
 14                -1  1     74112  models.common.Conv                      [384, 192, 1, 1]              
 15                -1  1         0  torch.nn.modules.upsampling.Upsample    [None, 2, 'nearest']          
 16           [-1, 4]  1         0  models.common.Concat                    [1]                           
 17                -1  2    296448  models.common.C3                        [384, 192, 2, False]          
 18                -1  1    332160  models.common.Conv                      [192, 192, 3, 2]              
 19          [-1, 14]  1         0  models.common.Concat                    [1]                           
 20                -1  2   1035264  models.common.C3                        [384, 384, 2, False]          
 21                -1  1   1327872  models.common.Conv                      [384, 384, 3, 2]              
 22          [-1, 10]  1         0  models.common.Concat                    [1]                           
 23                -1  2   4134912  models.common.C3                        [768, 768, 2, False]          
 24      [17, 20, 23]  1     24246  models.yolo.Detect                      [1, [[10, 13, 16, 30, 33, 23], [30, 61, 62, 45, 59, 119], [116, 90, 156, 198, 373, 326]], [192, 384, 768]]
YOLOv5m summary: 291 layers, 20871318 parameters, 20871318 gradients, 48.2 GFLOPs

optimizer: SGD(lr=0.01) with parameter groups 79 weight(decay=0.0), 82 weight(decay=0.0005), 82 bias
WARNING ⚠️ --rect is incompatible with DataLoader shuffle, setting shuffle=False
albumentations: Blur(p=0.01, blur_limit=(3, 7)), MedianBlur(p=0.01, blur_limit=(3, 7)), ToGray(p=0.01), CLAHE(p=0.01, clip_limit=(1, 4.0), tile_grid_size=(8, 8))
train: Scanning /Users/mulkansyarif/Desktop/yolov5/datasets/face/labels... 356 images, 0 backgrounds, 0 corrupt: 100%|██████████| 356/356 [00:07<00:00, 45.28i
train: New cache created: /Users/mulkansyarif/Desktop/yolov5/datasets/face/labels.cache
val: Scanning /Users/mulkansyarif/Desktop/yolov5/datasets/face/labels.cache... 356 images, 0 backgrounds, 0 corrupt: 100%|██████████| 356/356 [00:00<?, ?it/s]

AutoAnchor: 5.31 anchors/target, 1.000 Best Possible Recall (BPR). Current anchors are a good fit to dataset ✅
Plotting labels to runs/train/exp/labels.jpg... 
Image sizes 320 train, 320 val
Using 2 dataloader workers
Logging results to runs/train/exp
Starting training for 100 epochs...

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
       0/99         0G     0.0837    0.01134          0          2        320:  30%|███       | 54/178 [00:45<01:33,  1.32it/s]

hasil setiap pelatihan akan disimpan secara incrementi di runs/train/exp untuk melihat semua pengaturan dan hyper paramaternya, bisa file opt.yaml

weights: ''
cfg: /Users/mulkansyarif/Desktop/yolov5/models/yolov5m.yaml
data: /Users/mulkansyarif/Desktop/yolov5/data/face_config_dataset.yaml
hyp:
  lr0: 0.01
  lrf: 0.01
  momentum: 0.937
  weight_decay: 0.0005
  warmup_epochs: 3.0
  warmup_momentum: 0.8
  warmup_bias_lr: 0.1
  box: 0.05
  cls: 0.5
  cls_pw: 1.0
  obj: 1.0
  obj_pw: 1.0
  iou_t: 0.2
  anchor_t: 4.0
  fl_gamma: 0.0
  hsv_h: 0.015
  hsv_s: 0.7
  hsv_v: 0.4
  degrees: 0.0
  translate: 0.1
  scale: 0.5
  shear: 0.0
  perspective: 0.0
  flipud: 0.0
  fliplr: 0.5
  mosaic: 1.0
  mixup: 0.0
  copy_paste: 0.0
epochs: 100
batch_size: 2
imgsz: 320
rect: true
resume: false
nosave: false
noval: false
noautoanchor: false
noplots: false
evolve: null
evolve_population: data/hyps
resume_evolve: null
bucket: ''
cache: null
image_weights: false
device: ''
multi_scale: false
single_cls: false
optimizer: SGD
sync_bn: false
workers: 8
project: runs/train
name: exp
exist_ok: false
quad: false
cos_lr: false
label_smoothing: 0.0
patience: 100
freeze:
- 0
save_period: -1
seed: 0
local_rank: -1
entity: null
upload_dataset: false
bbox_interval: -1
artifact_alias: latest
ndjson_console: false
ndjson_file: false
save_dir: runs/train/exp

epoch ke 100

Berikut hasil epoch ke 100

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      99/99         0G    0.01116   0.004289          0          2        320: 100%|██████████| 178/178 [02:25<00:00,  1.22it/s]
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 89/89 [00:49<00:00,  1.81it/s]
                   all        356        356      0.997          1      0.995       0.87

100 epochs completed in 5.568 hours.
Optimizer stripped from runs/train/exp/weights/last.pt, 42.1MB
Optimizer stripped from runs/train/exp/weights/best.pt, 42.1MB

Validating runs/train/exp/weights/best.pt...
Fusing layers... 
YOLOv5m summary: 212 layers, 20852934 parameters, 0 gradients, 47.9 GFLOPs
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 89/89 [00:48<00:00,  1.84it/s]
                   all        356        356      0.999      0.997      0.995      0.871
Results saved to runs/train/exp

 

See also  Belajar mengenai Format YOLO, Pascal VOC, dan COCO serta Trimap pada Dataset Deep Learning

Melatih Model Yolo5 untuk deteksi Objek

berikut hasil epoch setelah mencapai 100 dengan menggunakan perintah

python detect.py --weights 'runs/train/exp/weights/best.pt' --source 'gambar.jpg' --imgsz 320 --conf-thres 0.8 --data 'data/face_config_dataset.yaml' --line-thickness 1

 

File diatas disimpan di /runs/detect/exp

Selain menggunakan image file kalian bisa kok menggunakan camera

$ python detect.py --weights yolov5s.pt --source 0                               # webcam
                                                 img.jpg                         # image
                                                 vid.mp4                         # video
                                                 screen                          # screenshot
                                                 path/                           # directory
                                                 list.txt                        # list of images
                                                 list.streams                    # list of streams
                                                 'path/*.jpg'                    # glob
                                                 'https://youtu.be/LNwODJXcvt4'  # YouTube
                                                 'rtsp://example.com/media.mp4'  # RTSP, RTMP, HTTP stream

berikut ketika menggunakan webcam

Melatih Model Yolo5 untuk deteksi Objek

Hal yang perlu kalian ketahui dari model YOLO yaitu  cocok untuk deteksi objek dengan file image dimension rectangle, bila tidak kalian bisa menggunakan trik dibawah ini

Semula ukuran 300 x 1500 pixel

menjadi  1500 x 15oo pixel

Langkah cukup berhasil daripada yolov5 memaksa melakukan resize maka gambarnya akan menjadi aneh nanti karena rationya cukup besar yaitu 1500/300 = 5 kali

Retraining

Untuk lakukan melanjutkan training nya lagi, kalian bisa langsung memasukan weight nya

python train.py --data 'face_config_dataset.yaml' --weights 'runs/train/exp/weights/best.pt' --cfg 'yolov5m.yaml'  --img 320 --rect --epochs 100

hasilnya

python train.py --data 'face_config_dataset.yaml' --weights 'runs/train/exp/weights/best.pt' --cfg 'yolov5m.yaml'  --img 320 --rect --epochs 100
train: weights=runs/train/exp/weights/best.pt, cfg=yolov5m.yaml, data=face_config_dataset.yaml, hyp=data/hyps/hyp.scratch-low.yaml, epochs=100, batch_size=2, imgsz=320, rect=True, resume=False, nosave=False, noval=False, noautoanchor=False, noplots=False, evolve=None, evolve_population=data/hyps, resume_evolve=None, bucket=, cache=None, image_weights=False, device=, multi_scale=False, single_cls=False, optimizer=SGD, sync_bn=False, workers=8, project=runs/train, name=exp, exist_ok=False, quad=False, cos_lr=False, label_smoothing=0.0, patience=100, freeze=[0], save_period=-1, seed=0, local_rank=-1, entity=None, upload_dataset=False, bbox_interval=-1, artifact_alias=latest, ndjson_console=False, ndjson_file=False
github: ⚠️ YOLOv5 is out of date by 1 commit. Use 'git pull' or 'git clone https://github.com/ultralytics/yolov5' to update.
YOLOv5 🚀 v7.0-365-g12b577c8 Python-3.11.5 torch-2.3.0 CPU

hyperparameters: lr0=0.01, lrf=0.01, momentum=0.937, weight_decay=0.0005, warmup_epochs=3.0, warmup_momentum=0.8, warmup_bias_lr=0.1, box=0.05, cls=0.5, cls_pw=1.0, obj=1.0, obj_pw=1.0, iou_t=0.2, anchor_t=4.0, fl_gamma=0.0, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, flipud=0.0, fliplr=0.5, mosaic=1.0, mixup=0.0, copy_paste=0.0
Comet: run 'pip install comet_ml' to automatically track and visualize YOLOv5 🚀 runs in Comet
TensorBoard: Start with 'tensorboard --logdir runs/train', view at http://localhost:6006/

                 from  n    params  module                                  arguments                     
  0                -1  1      5280  models.common.Conv                      [3, 48, 6, 2, 2]              
  1                -1  1     41664  models.common.Conv                      [48, 96, 3, 2]                
  2                -1  2     65280  models.common.C3                        [96, 96, 2]                   
  3                -1  1    166272  models.common.Conv                      [96, 192, 3, 2]               
  4                -1  4    444672  models.common.C3                        [192, 192, 4]                 
  5                -1  1    664320  models.common.Conv                      [192, 384, 3, 2]              
  6                -1  6   2512896  models.common.C3                        [384, 384, 6]                 
  7                -1  1   2655744  models.common.Conv                      [384, 768, 3, 2]              
  8                -1  2   4134912  models.common.C3                        [768, 768, 2]                 
  9                -1  1   1476864  models.common.SPPF                      [768, 768, 5]                 
 10                -1  1    295680  models.common.Conv                      [768, 384, 1, 1]              
 11                -1  1         0  torch.nn.modules.upsampling.Upsample    [None, 2, 'nearest']          
 12           [-1, 6]  1         0  models.common.Concat                    [1]                           
 13                -1  2   1182720  models.common.C3                        [768, 384, 2, False]          
 14                -1  1     74112  models.common.Conv                      [384, 192, 1, 1]              
 15                -1  1         0  torch.nn.modules.upsampling.Upsample    [None, 2, 'nearest']          
 16           [-1, 4]  1         0  models.common.Concat                    [1]                           
 17                -1  2    296448  models.common.C3                        [384, 192, 2, False]          
 18                -1  1    332160  models.common.Conv                      [192, 192, 3, 2]              
 19          [-1, 14]  1         0  models.common.Concat                    [1]                           
 20                -1  2   1035264  models.common.C3                        [384, 384, 2, False]          
 21                -1  1   1327872  models.common.Conv                      [384, 384, 3, 2]              
 22          [-1, 10]  1         0  models.common.Concat                    [1]                           
 23                -1  2   4134912  models.common.C3                        [768, 768, 2, False]          
 24      [17, 20, 23]  1     24246  models.yolo.Detect                      [1, [[10, 13, 16, 30, 33, 23], [30, 61, 62, 45, 59, 119], [116, 90, 156, 198, 373, 326]], [192, 384, 768]]
YOLOv5m summary: 291 layers, 20871318 parameters, 20871318 gradients, 48.2 GFLOPs

Transferred 480/481 items from runs/train/exp/weights/best.pt
optimizer: SGD(lr=0.01) with parameter groups 79 weight(decay=0.0), 82 weight(decay=0.0005), 82 bias
WARNING ⚠️ --rect is incompatible with DataLoader shuffle, setting shuffle=False
albumentations: Blur(p=0.01, blur_limit=(3, 7)), MedianBlur(p=0.01, blur_limit=(3, 7)), ToGray(p=0.01), CLAHE(p=0.01, clip_limit=(1, 4.0), tile_grid_size=(8, 8))
train: Scanning /Users/mulkansyarif/Desktop/yolov5/datasets/face/labels... 356 images, 0 backgrounds, 0 corrupt: 100%|██████████| 356/356 [00:07<00:00, 48.73i
train: New cache created: /Users/mulkansyarif/Desktop/yolov5/datasets/face/labels.cache
val: Scanning /Users/mulkansyarif/Desktop/yolov5/datasets/face/labels.cache... 356 images, 0 backgrounds, 0 corrupt: 100%|██████████| 356/356 [00:00<?, ?it/s]

AutoAnchor: 5.31 anchors/target, 1.000 Best Possible Recall (BPR). Current anchors are a good fit to dataset ✅
Plotting labels to runs/train/exp3/labels.jpg... 
Image sizes 320 train, 320 val
Using 2 dataloader workers
Logging results to runs/train/exp3
Starting training for 100 epochs...

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
       0/99         0G     0.0115   0.004215          0          2        320: 100%|██████████| 178/178 [02:20<00:00,  1.27it/s]
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 89/89 [00:46<00:00,  1.93it/s]
                   all        356        356      0.999      0.997      0.995      0.858

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
       1/99         0G    0.01629   0.004533          0          2        320: 100%|██████████| 178/178 [02:41<00:00,  1.10it/s]
                 Class     Images  Instances          P          R      mAP50   mAP50-95:  83%|████████▎ | 74/89 [00:39<00:08,  1.87it/s]

 

See also  Menyimpan Check Point pada Proses Iterasi Machine Learning

You May Have Missed