
MFCC (Mel-Frequency Cepstral Coefficients) adalah fitur yang paling umum digunakan dalam pemrosesan sinyal audio, terutama untuk pengenalan suara dan klasifikasi suara. MFCC meniru cara manusia mendengar dan menangkap karakteristik suara berdasarkan persepsi frekuensi.
Langkah-langkah Ekstraksi MFCC dari Sinyal Audio
1. Pre-emphasis (opsional)
Meningkatkan energi frekuensi tinggi:
Biasanya, $\alpha \approx 0.95$
2. Framing
Sinyal dibagi menjadi frame kecil (misalnya 25ms) untuk menangkap dinamika lokal.
3. Windowing
Untuk menghindari efek diskontinuitas di tepi frame. Umumnya digunakan jendela Hamming:
4. FFT (Fast Fourier Transform)
Mengubah sinyal dari domain waktu ke domain frekuensi.
5. Mel Filter Bank
Energi spektrum dikalikan dengan filter bank mel (biasanya 20-40 filter). Skala Mel meniru persepsi manusia terhadap frekuensi:
6. Log Energi
Ambil log dari hasil setiap filter untuk mensimulasikan persepsi logaritmik manusia terhadap suara.
7. DCT (Discrete Cosine Transform)
DCT diterapkan pada log-energi dari filter bank untuk mendapatkan koefisien MFCC (biasanya ambil 12-13 pertama + 1 energi total):
Contoh menggunakan librosa
import librosa import librosa.display import matplotlib.pyplot as plt # Load audio y, sr = librosa.load('audio.wav', sr=None) # Ekstraksi MFCC mfcc = librosa.feature.mfcc(y=y, sr=sr, n_mfcc=13) # Visualisasi plt.figure(figsize=(10, 4)) librosa.display.specshow(mfcc, x_axis='time') plt.colorbar() plt.title('MFCC') plt.tight_layout() plt.show()
Contoh menggunakan torchaudio
import torch import torchaudio import matplotlib.pyplot as plt # Load audio (contoh: file .wav) waveform, sample_rate = torchaudio.load("audio.wav") # waveform shape: [channel, time] # Pastikan audio mono (gunakan channel pertama jika stereo) if waveform.shape[0] > 1: waveform = waveform[0:1, :] # ambil channel pertama # Ekstraksi MFCC mfcc_transform = torchaudio.transforms.MFCC( sample_rate=sample_rate, n_mfcc=13, # Jumlah koefisien MFCC melkwargs={ 'n_fft': 400, # ukuran FFT 'hop_length': 160, # jarak antar frame (biasanya 10ms = 160 jika sr=16k) 'n_mels': 40, # jumlah filter mel 'center': False } ) mfcc = mfcc_transform(waveform) # shape: [channel, n_mfcc, time] # Visualisasi plt.figure(figsize=(10, 4)) plt.imshow(mfcc[0].detach().numpy(), aspect='auto', origin='lower') plt.title("MFCC (PyTorch)") plt.xlabel("Frame Index") plt.ylabel("MFCC Coefficients") plt.colorbar() plt.tight_layout() plt.show()
Contoh bila menggunakan numpy
import numpy as np from scipy.fftpack import dct def mfcc_numpy(signal, sample_rate=16000, pre_emphasis_coef=0.97, frame_size=0.025, # 25 ms frame_stride=0.01, # 10 ms num_filters=26, nfft=512, num_ceps=13): # 1. Pre-emphasis emphasized_signal = np.append(signal[0], signal[1:] - pre_emphasis_coef * signal[:-1]) # 2. Framing frame_length = int(round(frame_size * sample_rate)) frame_step = int(round(frame_stride * sample_rate)) signal_length = len(emphasized_signal) num_frames = int(np.ceil(float(np.abs(signal_length - frame_length)) / frame_step)) + 1 pad_signal_length = num_frames * frame_step + frame_length z = np.zeros((pad_signal_length - signal_length)) pad_signal = np.append(emphasized_signal, z) indices = np.tile(np.arange(0, frame_length), (num_frames,1)) + \ np.tile(np.arange(0, num_frames * frame_step, frame_step), (frame_length,1)).T frames = pad_signal[indices.astype(np.int32, copy=False)] # 3. Windowing - Hamming frames *= np.hamming(frame_length) # 4. FFT and Power Spectrum mag_frames = np.absolute(np.fft.rfft(frames, nfft)) # Magnitude of the FFT pow_frames = ((1.0 / nfft) * (mag_frames ** 2)) # Power Spectrum # 5. Filter Banks low_freq_mel = 0 high_freq_mel = 2595 * np.log10(1 + (sample_rate / 2) / 700) # Convert Hz to Mel mel_points = np.linspace(low_freq_mel, high_freq_mel, num_filters + 2) # Equally spaced in Mel scale hz_points = 700 * (10**(mel_points / 2595) - 1) # Convert Mel to Hz bin = np.floor((nfft + 1) * hz_points / sample_rate).astype(np.int32) fbank = np.zeros((num_filters, int(np.floor(nfft / 2 + 1)))) for m in range(1, num_filters + 1): f_m_minus = bin[m - 1] # left f_m = bin[m] # center f_m_plus = bin[m + 1] # right for k in range(f_m_minus, f_m): fbank[m - 1, k] = (k - bin[m - 1]) / (bin[m] - bin[m - 1]) for k in range(f_m, f_m_plus): fbank[m - 1, k] = (bin[m + 1] - k) / (bin[m + 1] - bin[m]) filter_banks = np.dot(pow_frames, fbank.T) # Numerical stability filter_banks = np.where(filter_banks == 0, np.finfo(float).eps, filter_banks) # 6. Log Energies filter_banks = 20 * np.log10(filter_banks) # 7. DCT to get MFCC mfcc = dct(filter_banks, type=2, axis=1, norm='ortho')[:, :num_ceps] return mfcc # Contoh penggunaan: if __name__ == "__main__": # Generate contoh sinyal sinus 440 Hz selama 1 detik fs = 16000 t = np.linspace(0, 1, fs) freq = 440 signal = 0.5 * np.sin(2 * np.pi * freq * t) mfcc_features = mfcc_numpy(signal, sample_rate=fs) print(mfcc_features.shape) # (num_frames, num_ceps)
Pengenalan kata Yes dan No menggunakan MFCC
Contents
Kita akan menggunakan dataset yang sudah ada di torchaudio. torchaudio.datasets.YESNO
adalah dataset built-in dari torchaudio
yang berisi rekaman suara seseorang yang mengucapkan kata “yes” atau “no” dalam bahasa Inggris sebanyak 8 kata per rekaman.
| Atribut | Keterangan | | --------------- | ---------------------------------------- | | Asal | CMU Arctic corpus | | Isi | 60 rekaman audio WAV | | Panjang rekaman | \~2 detik | | Ucapan per file | 8 kata (kombinasi "yes" dan "no") | | Jumlah label | 8 angka biner per file (1 = yes, 0 = no) | | Jumlah file | 60 file WAV (dengan label) | | Format | WAV 16kHz mono |
mari kita loading dataset nya agar lebih jelas
import torchaudio # Download dan load dataset YESNO dataset = torchaudio.datasets.YESNO(root="data", download=True) # Ambil satu sampel waveform, sample_rate, labels = dataset[0] print("Waveform shape:", waveform.shape) print("Sample rate:", sample_rate) print("Labels:", labels) # Contoh: [1, 1, 1, 1, 1, 1, 1, 1] → semua "yes"
mari kita putar saja audionya
import matplotlib.pyplot as plt import IPython.display as ipd # Tampilkan waveform plt.figure(figsize=(10, 3)) plt.plot(waveform[0].numpy()) plt.title(f"Labels: {labels}") plt.show() # Putar audio (di notebook) ipd.Audio(waveform.numpy(), rate=sample_rate)
Kita buat spliting 8 segment diatas
Berikut adalah fungsi otomatis memotong sinyal audio dari torchaudio.datasets.YESNO
menjadi 8 segmen kata (masing-masing mewakili satu kata: “yes” atau “no”).
def split_yesno_segments(waveform, sample_rate): """ Memotong satu waveform YESNO menjadi 8 segmen kata (yes/no). Args: waveform (Tensor): Tensor audio [1, T] sample_rate (int): Sampel rate (biasanya 16000 Hz) Returns: List[Tensor]: List 8 segmen waveform, masing-masing [1, segment_length] """ total_duration_sec = waveform.shape[1] / sample_rate segment_duration = total_duration_sec / 8 # 8 kata per audio segment_samples = int(segment_duration * sample_rate) segments = [] for i in range(8): start = i * segment_samples end = (i + 1) * segment_samples segment = waveform[:, start:end] segments.append(segment) return segments
contoh penggunaan
import torchaudio import matplotlib.pyplot as plt # Load dataset YESNO dataset = torchaudio.datasets.YESNO(root="data", download=True) waveform, sample_rate, labels = dataset[0] # Potong jadi 8 segmen segments = split_yesno_segments(waveform, sample_rate) # Visualisasi salah satu segmen (misalnya segmen ke-3) plt.plot(segments[2][0].numpy()) plt.title(f"Segment 3 - Label: {'yes' if labels[2] else 'no'}") plt.show()
Penerapan MFCC
Berikut versi lengkap fungsi yang langsung memotong audio menjadi 8 segmen dan mengekstrak MFCC dari masing-masing segmen.
import torch import torchaudio def extract_mfcc_segments(waveform, sample_rate, n_mfcc=13, n_mels=40): """ Memotong waveform menjadi 8 segmen dan mengekstrak MFCC dari tiap segmen. Args: waveform (Tensor): Tensor audio [1, T] sample_rate (int): Sampel rate, default YESNO = 16000 n_mfcc (int): Jumlah koefisien MFCC n_mels (int): Jumlah filter Mel Returns: List[Tensor]: List 8 MFCC tensors, masing-masing shape [n_mfcc, time] """ total_duration_sec = waveform.shape[1] / sample_rate segment_duration = total_duration_sec / 8 segment_samples = int(segment_duration * sample_rate) # Inisialisasi transformasi MFCC mfcc_transform = torchaudio.transforms.MFCC( sample_rate=sample_rate, n_mfcc=n_mfcc, melkwargs={ 'n_fft': 400, 'hop_length': 160, 'n_mels': n_mels, 'center': False } ) mfcc_segments = [] for i in range(8): start = i * segment_samples end = (i + 1) * segment_samples segment = waveform[:, start:end] mfcc = mfcc_transform(segment) # [1, n_mfcc, time] mfcc_segments.append(mfcc.squeeze(0)) # [n_mfcc, time] return mfcc_segments
cara penggunaan
waveform, sample_rate, labels = yesno_data[0] # Ekstraksi MFCC per segmen mfcc_segments = extract_mfcc_segments(waveform, sample_rate) # Contoh visualisasi segmen ke-1 import matplotlib.pyplot as plt for i in range(0, len(mfcc_segments)): if labels[i]==1: label = 'yes' else: label = 'no' plt.imshow(mfcc_segments[i].numpy(), aspect='auto', origin='lower') plt.title("MFCC Segment "+str(i)+" - Label: "+label) plt.colorbar() plt.tight_layout() plt.show()
CNN untuk klasifikasi suara sederhana
Kita bisa menggunakan MFCC sebagai input di CNN. Mengingat ukuran MFCC yang dihasilkan bisa berbeda-beda ukurannya, kita akan banyak modifikasi terlebih dahulu agar model CNN bisa menerima input dengan beragam ukuran.
Dataset Kustom: YESNO Segmen per Kata
Misalkan menggunakan class sebagai berikut sebagai rencana awal nya
from torch.utils.data import Dataset class YesNoSegmentDataset(Dataset): def __init__(self, root="data", n_mfcc=13): self.dataset = torchaudio.datasets.YESNO(root=root, download=True) self.sample_rate = 16000 self.n_mfcc = n_mfcc self.mfcc_transform = torchaudio.transforms.MFCC( sample_rate=self.sample_rate, n_mfcc=n_mfcc, melkwargs={'n_fft': 400, 'hop_length': 160, 'n_mels': 40, 'center': False} ) self.samples = [] # list of (mfcc_tensor, label) for waveform, sr, labels in self.dataset: segment_mfccs = self._extract_mfcc_segments(waveform) for mfcc, label in zip(segment_mfccs, labels): self.samples.append((mfcc, torch.tensor(label, dtype=torch.long))) def _extract_mfcc_segments(self, waveform): segment_len = waveform.shape[1] // 8 mfccs = [] for i in range(8): seg = waveform[:, i * segment_len : (i + 1) * segment_len] mfcc = self.mfcc_transform(seg).squeeze(0) # [n_mfcc, time] mfccs.append(mfcc) return mfccs def __len__(self): return len(self.samples) def __getitem__(self, idx): x, y = self.samples[idx] return x.unsqueeze(0), y # [1, n_mfcc, time], label
Model CNN nya sebagai berikut
import torch.nn as nn import torch.nn.functional as F class MFCC_CNN(nn.Module): def __init__(self): super().__init__() self.net = nn.Sequential( nn.Conv2d(1, 16, kernel_size=3, padding=1), # [B, 16, n_mfcc, time] nn.ReLU(), nn.MaxPool2d(2), # [B, 16, n_mfcc/2, time/2] nn.Conv2d(16, 32, kernel_size=3, padding=1), nn.ReLU(), nn.MaxPool2d(2), # [B, 32, n_mfcc/4, time/4] nn.Flatten(), nn.Linear(32 * (13 // 4) * (40 // 4), 64), nn.ReLU(), nn.Linear(64, 2) # 2 kelas: yes / no ) def forward(self, x): return self.net(x)
bila kita run pelatihannya
from torch.utils.data import DataLoader import torch.optim as optim # Setup device = torch.device("cuda" if torch.cuda.is_available() else "cpu") dataset = YesNoSegmentDataset() loader = DataLoader(dataset, batch_size=16, shuffle=True) model = MFCC_CNN().to(device) optimizer = optim.Adam(model.parameters(), lr=1e-3) loss_fn = nn.CrossEntropyLoss() # Training for epoch in range(10): total_loss = 0 correct = 0 for x, y in loader: x, y = x.to(device), y.to(device) logits = model(x) loss = loss_fn(logits, y) optimizer.zero_grad() loss.backward() optimizer.step() total_loss += loss.item() correct += (logits.argmax(1) == y).sum().item() acc = correct / len(dataset) print(f"Epoch {epoch+1} | Loss: {total_loss:.4f} | Accuracy: {acc:.2%}")
hemm akan ada error karena ukuran MFCC nya berbeda-beda
RuntimeError: stack expects each tensor to be equal size, but got [1, 13, 40] at entry 0 and [1, 13, 37] at entry 1
Error ini muncul karena panjang dimensi waktu (time axis) dari MFCC berbeda-beda antar segmen, contohnya:
-
Segment 0:
[1, 13, 40]
(13 MFCC, 40 frame waktu) -
Segment 1:
[1, 13, 37]
(13 MFCC, 37 frame waktu)
DataLoader
mencoba stack semua batch jadi 1 tensor (seperti torch.stack()
), tapi tidak bisa jika shape-nya beda. Solusinya
solusi 1: Pad MFCC agar Semua Sama Panjang
Buat fungsi padding ke panjang waktu tetap, misalnya 40 frame:
import torch.nn.functional as F def pad_mfcc(mfcc, target_length=40): """ Pad atau potong mfcc ke panjang waktu tetap. Args: mfcc: Tensor [n_mfcc, time] target_length: jumlah frame waktu yang diinginkan Returns: Tensor [n_mfcc, target_length] """ current_length = mfcc.shape[1] if current_length < target_length: pad_amt = target_length - current_length return F.pad(mfcc, (0, pad_amt)) # pad di akhir time axis else: return mfcc[:, :target_length] # potong jika terlalu panjang
tambahkan ke dalam YesNoSegmentDataset
:
Ubah bagian __getitem__()
:
def __getitem__(self, idx): x, y = self.samples[idx] x = pad_mfcc(x, target_length=40) # pastikan panjang waktu tetap return x.unsqueeze(0), y # [1, 13, 40], label
solusi 2: Pakai collate_fn
custom (jika ingin flexible padding)
Kalau kamu ingin padding dinamis dalam DataLoader
, kamu bisa juga buat collate_fn
, tapi solusi di atas lebih sederhana dan cukup untuk model CNN yang butuh ukuran tetap.
Setelah padding semua MFCC ke panjang tetap ([1, 13, 40]
), DataLoader
akan bisa stack batch dengan lancar.
Tujuan collate_fn
ini:
-
Menerima list
[mfcc, label]
-
Menyamakan panjang dimensi waktu semua MFCC dalam batch
-
Padding agar bisa dibentuk jadi batch tensor
[B, 1, 13, max_time]
mari kita buat fungsi collate_fn
import torch import torch.nn.functional as F def collate_fn_pad_mfcc(batch): """ Custom collate function untuk padding MFCC ke panjang waktu sama. Args: batch: list of (mfcc_tensor [1, 13, T], label) Returns: padded_mfccs: Tensor [B, 1, 13, max_time] labels: Tensor [B] """ mfccs, labels = zip(*batch) # unzip # Temukan panjang maksimum time axis max_len = max(mfcc.shape[-1] for mfcc in mfccs) padded_mfccs = [] for mfcc in mfccs: # mfcc: [1, 13, T] pad_amt = max_len - mfcc.shape[-1] padded = F.pad(mfcc, (0, pad_amt)) # pad hanya di time axis (dim -1) padded_mfccs.append(padded) # Stack jadi batch tensor padded_mfccs = torch.stack(padded_mfccs) # [B, 1, 13, max_len] labels = torch.stack(labels) # [B] return padded_mfccs, labels
pasangkan ke dataloader
from torch.utils.data import DataLoader dataset = YesNoSegmentDataset() loader = DataLoader(dataset, batch_size=16, shuffle=True, collate_fn=collate_fn_pad_mfcc)
Catatan Penting untuk Model
Karena dimensi time
bisa bervariasi di setiap batch (misal 13×37
, 13×40
, dst), maka:
-
Pastikan CNN kamu bisa menerima input dengan dimensi waktu fleksibel.
-
Biasanya,
Conv2d
danMaxPool2d
aman asalkan resolusi minimum tetap cukup besar.
Maka kita ubah dulu modelnya sebagai berikut
import torch.nn as nn class MFCC_CNN(nn.Module): def __init__(self): super().__init__() self.conv_layers = nn.Sequential( nn.Conv2d(1, 16, 3, padding=1), nn.ReLU(), nn.MaxPool2d(2), nn.Conv2d(16, 32, 3, padding=1), nn.ReLU(), nn.MaxPool2d(2), nn.AdaptiveAvgPool2d((4, 4)) ) self.classifier = nn.Sequential( nn.Flatten(), nn.Linear(32 * 4 * 4, 64), nn.ReLU(), nn.Linear(64, 2) ) def forward(self, x): x = self.conv_layers(x) x = self.classifier(x) return x
Berikut final dari pelatihannya
from torch.utils.data import DataLoader import torch.optim as optim # Setup device = torch.device("cuda" if torch.cuda.is_available() else "cpu") dataset = YesNoSegmentDataset() # loader = DataLoader(dataset, batch_size=16, shuffle=True) loader = DataLoader(dataset, batch_size=16, shuffle=True, collate_fn=collate_fn_pad_mfcc) model = MFCC_CNN().to(device) optimizer = optim.Adam(model.parameters(), lr=1e-3) loss_fn = nn.CrossEntropyLoss() # Training for epoch in range(1000): total_loss = 0 correct = 0 for x, y in loader: x, y = x.to(device), y.to(device) logits = model(x) loss = loss_fn(logits, y) optimizer.zero_grad() loss.backward() optimizer.step() total_loss += loss.item() correct += (logits.argmax(1) == y).sum().item() acc = correct / len(dataset) print(f"Epoch {epoch+1} | Loss: {total_loss:.4f} | Accuracy: {acc:.2%}")
dengan hasil sebagai berikut
Epoch 1 | Loss: 26.2292 | Accuracy: 52.71% Epoch 2 | Loss: 18.2889 | Accuracy: 65.83% Epoch 3 | Loss: 17.0057 | Accuracy: 70.42% Epoch 4 | Loss: 16.0658 | Accuracy: 72.29% Epoch 5 | Loss: 15.2807 | Accuracy: 71.25% Epoch 6 | Loss: 15.3737 | Accuracy: 72.92% Epoch 7 | Loss: 16.1613 | Accuracy: 70.21% Epoch 8 | Loss: 14.7362 | Accuracy: 76.04% Epoch 9 | Loss: 14.5108 | Accuracy: 74.79% Epoch 10 | Loss: 14.6439 | Accuracy: 75.21% Epoch 11 | Loss: 14.2847 | Accuracy: 75.00% Epoch 12 | Loss: 14.3857 | Accuracy: 75.00% Epoch 13 | Loss: 12.5071 | Accuracy: 78.96% Epoch 14 | Loss: 12.1144 | Accuracy: 81.46% Epoch 15 | Loss: 12.0223 | Accuracy: 80.83% Epoch 16 | Loss: 11.5861 | Accuracy: 82.08% Epoch 17 | Loss: 11.7297 | Accuracy: 80.83% Epoch 18 | Loss: 10.8024 | Accuracy: 84.17% Epoch 19 | Loss: 10.9587 | Accuracy: 83.75% Epoch 20 | Loss: 9.7609 | Accuracy: 86.04% Epoch 21 | Loss: 9.5121 | Accuracy: 85.21% Epoch 22 | Loss: 9.5792 | Accuracy: 85.83% Epoch 23 | Loss: 7.7602 | Accuracy: 88.54% Epoch 24 | Loss: 7.1596 | Accuracy: 90.42% Epoch 25 | Loss: 6.7793 | Accuracy: 90.62% Epoch 26 | Loss: 6.3053 | Accuracy: 91.88% Epoch 27 | Loss: 5.8734 | Accuracy: 92.50% Epoch 28 | Loss: 5.3829 | Accuracy: 92.50% Epoch 29 | Loss: 5.0102 | Accuracy: 94.17% Epoch 30 | Loss: 4.2111 | Accuracy: 95.00% Epoch 31 | Loss: 4.1987 | Accuracy: 94.58% Epoch 32 | Loss: 3.9876 | Accuracy: 95.00% Epoch 33 | Loss: 4.4293 | Accuracy: 94.17% Epoch 34 | Loss: 3.0900 | Accuracy: 96.46% Epoch 35 | Loss: 3.9723 | Accuracy: 94.58% Epoch 36 | Loss: 4.0678 | Accuracy: 95.00% Epoch 37 | Loss: 3.4426 | Accuracy: 96.25% Epoch 38 | Loss: 2.2301 | Accuracy: 97.50% Epoch 39 | Loss: 3.2947 | Accuracy: 95.83% Epoch 40 | Loss: 1.8023 | Accuracy: 98.54% Epoch 41 | Loss: 1.6340 | Accuracy: 98.12% Epoch 42 | Loss: 1.2069 | Accuracy: 99.17% Epoch 43 | Loss: 0.9231 | Accuracy: 98.96% Epoch 44 | Loss: 1.0076 | Accuracy: 99.38% Epoch 45 | Loss: 1.0945 | Accuracy: 98.75% Epoch 46 | Loss: 1.5428 | Accuracy: 98.54% Epoch 47 | Loss: 2.8091 | Accuracy: 96.88% Epoch 48 | Loss: 4.7232 | Accuracy: 92.92% Epoch 49 | Loss: 4.0821 | Accuracy: 95.42% Epoch 50 | Loss: 2.3349 | Accuracy: 97.50% Epoch 51 | Loss: 0.8448 | Accuracy: 99.58% Epoch 52 | Loss: 0.3800 | Accuracy: 100.00% Epoch 53 | Loss: 0.1901 | Accuracy: 100.00% Epoch 54 | Loss: 0.1935 | Accuracy: 100.00% Epoch 55 | Loss: 0.5328 | Accuracy: 99.58% Epoch 56 | Loss: 0.4569 | Accuracy: 99.58% Epoch 57 | Loss: 0.5992 | Accuracy: 99.79% Epoch 58 | Loss: 0.2574 | Accuracy: 100.00% Epoch 59 | Loss: 0.2273 | Accuracy: 100.00% Epoch 60 | Loss: 0.2254 | Accuracy: 99.79% Epoch 61 | Loss: 0.6182 | Accuracy: 99.38% Epoch 62 | Loss: 0.3135 | Accuracy: 100.00% Epoch 63 | Loss: 0.1344 | Accuracy: 100.00% Epoch 64 | Loss: 0.0817 | Accuracy: 100.00% Epoch 65 | Loss: 0.0730 | Accuracy: 100.00% Epoch 66 | Loss: 0.0894 | Accuracy: 100.00% Epoch 67 | Loss: 0.0578 | Accuracy: 100.00% Epoch 68 | Loss: 0.0539 | Accuracy: 100.00% Epoch 69 | Loss: 0.0707 | Accuracy: 100.00% Epoch 70 | Loss: 0.0524 | Accuracy: 100.00% Epoch 71 | Loss: 0.0570 | Accuracy: 100.00% Epoch 72 | Loss: 0.0418 | Accuracy: 100.00% Epoch 73 | Loss: 0.0482 | Accuracy: 100.00% Epoch 74 | Loss: 0.0705 | Accuracy: 100.00% Epoch 75 | Loss: 0.0430 | Accuracy: 100.00% Epoch 76 | Loss: 0.0659 | Accuracy: 100.00% Epoch 77 | Loss: 0.0547 | Accuracy: 100.00% Epoch 78 | Loss: 0.0297 | Accuracy: 100.00% Epoch 79 | Loss: 0.0347 | Accuracy: 100.00% Epoch 80 | Loss: 0.0340 | Accuracy: 100.00% Epoch 81 | Loss: 0.0280 | Accuracy: 100.00% Epoch 82 | Loss: 0.0241 | Accuracy: 100.00% Epoch 83 | Loss: 0.0241 | Accuracy: 100.00% Epoch 84 | Loss: 0.0185 | Accuracy: 100.00% Epoch 85 | Loss: 0.0235 | Accuracy: 100.00% Epoch 86 | Loss: 0.0199 | Accuracy: 100.00% Epoch 87 | Loss: 0.0255 | Accuracy: 100.00% Epoch 88 | Loss: 0.0178 | Accuracy: 100.00% Epoch 89 | Loss: 0.0179 | Accuracy: 100.00% Epoch 90 | Loss: 0.0211 | Accuracy: 100.00% Epoch 91 | Loss: 0.0166 | Accuracy: 100.00% Epoch 92 | Loss: 0.0189 | Accuracy: 100.00% Epoch 93 | Loss: 0.0155 | Accuracy: 100.00% Epoch 94 | Loss: 0.0165 | Accuracy: 100.00% Epoch 95 | Loss: 0.0177 | Accuracy: 100.00% Epoch 96 | Loss: 0.0117 | Accuracy: 100.00% Epoch 97 | Loss: 0.0142 | Accuracy: 100.00% Epoch 98 | Loss: 0.0136 | Accuracy: 100.00% Epoch 99 | Loss: 0.0128 | Accuracy: 100.00% Epoch 100 | Loss: 0.0109 | Accuracy: 100.00% Epoch 101 | Loss: 0.0115 | Accuracy: 100.00% Epoch 102 | Loss: 0.0110 | Accuracy: 100.00% Epoch 103 | Loss: 0.0131 | Accuracy: 100.00% Epoch 104 | Loss: 0.0121 | Accuracy: 100.00% Epoch 105 | Loss: 0.0139 | Accuracy: 100.00% Epoch 106 | Loss: 0.0088 | Accuracy: 100.00% Epoch 107 | Loss: 0.0096 | Accuracy: 100.00% Epoch 108 | Loss: 0.0096 | Accuracy: 100.00% Epoch 109 | Loss: 0.0085 | Accuracy: 100.00% Epoch 110 | Loss: 0.0099 | Accuracy: 100.00% Epoch 111 | Loss: 0.0100 | Accuracy: 100.00% Epoch 112 | Loss: 0.0108 | Accuracy: 100.00% Epoch 113 | Loss: 0.0079 | Accuracy: 100.00% Epoch 114 | Loss: 0.0075 | Accuracy: 100.00% Epoch 115 | Loss: 0.0064 | Accuracy: 100.00% Epoch 116 | Loss: 0.0127 | Accuracy: 100.00% Epoch 117 | Loss: 0.0095 | Accuracy: 100.00% Epoch 118 | Loss: 0.0077 | Accuracy: 100.00% Epoch 119 | Loss: 0.0079 | Accuracy: 100.00% Epoch 120 | Loss: 0.0100 | Accuracy: 100.00% Epoch 121 | Loss: 0.0095 | Accuracy: 100.00% Epoch 122 | Loss: 0.0073 | Accuracy: 100.00% Epoch 123 | Loss: 0.0102 | Accuracy: 100.00% Epoch 124 | Loss: 0.0071 | Accuracy: 100.00% Epoch 125 | Loss: 0.0078 | Accuracy: 100.00% Epoch 126 | Loss: 0.0062 | Accuracy: 100.00% Epoch 127 | Loss: 0.0080 | Accuracy: 100.00% Epoch 128 | Loss: 0.0054 | Accuracy: 100.00% Epoch 129 | Loss: 0.0055 | Accuracy: 100.00% Epoch 130 | Loss: 0.0062 | Accuracy: 100.00% Epoch 131 | Loss: 0.0052 | Accuracy: 100.00% Epoch 132 | Loss: 0.0096 | Accuracy: 100.00% Epoch 133 | Loss: 0.0071 | Accuracy: 100.00% Epoch 134 | Loss: 0.0051 | Accuracy: 100.00% Epoch 135 | Loss: 0.0050 | Accuracy: 100.00% Epoch 136 | Loss: 0.0046 | Accuracy: 100.00% Epoch 137 | Loss: 0.0054 | Accuracy: 100.00% Epoch 138 | Loss: 0.0039 | Accuracy: 100.00% Epoch 139 | Loss: 0.0040 | Accuracy: 100.00% Epoch 140 | Loss: 0.0185 | Accuracy: 100.00% Epoch 141 | Loss: 0.0071 | Accuracy: 100.00% Epoch 142 | Loss: 0.0045 | Accuracy: 100.00% Epoch 143 | Loss: 0.0054 | Accuracy: 100.00% Epoch 144 | Loss: 0.0057 | Accuracy: 100.00% Epoch 145 | Loss: 0.0044 | Accuracy: 100.00% Epoch 146 | Loss: 0.0040 | Accuracy: 100.00% Epoch 147 | Loss: 0.0054 | Accuracy: 100.00% Epoch 148 | Loss: 0.0038 | Accuracy: 100.00% Epoch 149 | Loss: 0.0043 | Accuracy: 100.00% Epoch 150 | Loss: 0.0055 | Accuracy: 100.00% Epoch 151 | Loss: 0.0030 | Accuracy: 100.00% Epoch 152 | Loss: 0.0047 | Accuracy: 100.00% Epoch 153 | Loss: 0.0032 | Accuracy: 100.00% Epoch 154 | Loss: 0.0046 | Accuracy: 100.00% Epoch 155 | Loss: 0.0037 | Accuracy: 100.00% Epoch 156 | Loss: 0.0034 | Accuracy: 100.00% Epoch 157 | Loss: 0.0033 | Accuracy: 100.00% Epoch 158 | Loss: 0.0037 | Accuracy: 100.00% Epoch 159 | Loss: 0.0034 | Accuracy: 100.00% Epoch 160 | Loss: 0.0032 | Accuracy: 100.00% Epoch 161 | Loss: 0.0049 | Accuracy: 100.00% Epoch 162 | Loss: 0.0029 | Accuracy: 100.00% Epoch 163 | Loss: 0.0032 | Accuracy: 100.00% Epoch 164 | Loss: 0.0027 | Accuracy: 100.00% Epoch 165 | Loss: 0.0029 | Accuracy: 100.00% Epoch 166 | Loss: 0.0036 | Accuracy: 100.00% Epoch 167 | Loss: 0.0028 | Accuracy: 100.00% Epoch 168 | Loss: 0.0031 | Accuracy: 100.00% Epoch 169 | Loss: 0.0023 | Accuracy: 100.00% Epoch 170 | Loss: 0.0023 | Accuracy: 100.00% Epoch 171 | Loss: 0.0025 | Accuracy: 100.00% Epoch 172 | Loss: 0.0023 | Accuracy: 100.00% Epoch 173 | Loss: 0.0021 | Accuracy: 100.00% Epoch 174 | Loss: 0.0024 | Accuracy: 100.00% Epoch 175 | Loss: 0.0022 | Accuracy: 100.00% Epoch 176 | Loss: 0.0019 | Accuracy: 100.00% Epoch 177 | Loss: 0.0021 | Accuracy: 100.00% Epoch 178 | Loss: 0.0025 | Accuracy: 100.00% Epoch 179 | Loss: 0.0017 | Accuracy: 100.00% Epoch 180 | Loss: 0.0018 | Accuracy: 100.00% Epoch 181 | Loss: 0.0015 | Accuracy: 100.00% Epoch 182 | Loss: 0.0019 | Accuracy: 100.00% Epoch 183 | Loss: 0.0021 | Accuracy: 100.00% Epoch 184 | Loss: 0.0018 | Accuracy: 100.00% Epoch 185 | Loss: 0.0023 | Accuracy: 100.00% Epoch 186 | Loss: 0.0024 | Accuracy: 100.00% Epoch 187 | Loss: 0.0019 | Accuracy: 100.00% Epoch 188 | Loss: 0.0023 | Accuracy: 100.00% Epoch 189 | Loss: 0.0017 | Accuracy: 100.00% Epoch 190 | Loss: 0.0024 | Accuracy: 100.00% Epoch 191 | Loss: 0.0023 | Accuracy: 100.00% Epoch 192 | Loss: 0.0390 | Accuracy: 100.00% Epoch 193 | Loss: 18.6600 | Accuracy: 80.00% Epoch 194 | Loss: 12.5987 | Accuracy: 84.17% Epoch 195 | Loss: 8.5316 | Accuracy: 88.96% Epoch 196 | Loss: 7.4993 | Accuracy: 88.75% Epoch 197 | Loss: 5.5558 | Accuracy: 92.08% Epoch 198 | Loss: 4.6345 | Accuracy: 94.17% Epoch 199 | Loss: 2.7514 | Accuracy: 96.88% Epoch 200 | Loss: 2.9323 | Accuracy: 96.88% Epoch 201 | Loss: 2.0268 | Accuracy: 97.08% Epoch 202 | Loss: 1.3389 | Accuracy: 98.33% Epoch 203 | Loss: 2.7342 | Accuracy: 96.04% Epoch 204 | Loss: 1.2913 | Accuracy: 98.54% Epoch 205 | Loss: 0.8766 | Accuracy: 99.38% Epoch 206 | Loss: 0.6008 | Accuracy: 99.58% Epoch 207 | Loss: 1.1676 | Accuracy: 98.33% Epoch 208 | Loss: 1.1118 | Accuracy: 98.96% Epoch 209 | Loss: 0.7183 | Accuracy: 99.17% Epoch 210 | Loss: 0.2214 | Accuracy: 100.00% Epoch 211 | Loss: 0.1458 | Accuracy: 100.00% Epoch 212 | Loss: 0.1117 | Accuracy: 100.00% Epoch 213 | Loss: 0.0873 | Accuracy: 100.00% Epoch 214 | Loss: 0.1275 | Accuracy: 100.00% Epoch 215 | Loss: 0.1159 | Accuracy: 100.00% Epoch 216 | Loss: 0.1644 | Accuracy: 100.00% Epoch 217 | Loss: 0.0570 | Accuracy: 100.00% Epoch 218 | Loss: 0.0635 | Accuracy: 100.00% Epoch 219 | Loss: 0.0301 | Accuracy: 100.00% Epoch 220 | Loss: 0.0714 | Accuracy: 100.00% Epoch 221 | Loss: 0.1437 | Accuracy: 100.00% Epoch 222 | Loss: 0.0681 | Accuracy: 100.00% Epoch 223 | Loss: 0.0375 | Accuracy: 100.00% Epoch 224 | Loss: 0.0515 | Accuracy: 100.00% Epoch 225 | Loss: 0.0328 | Accuracy: 100.00% Epoch 226 | Loss: 0.0202 | Accuracy: 100.00% Epoch 227 | Loss: 0.0182 | Accuracy: 100.00% Epoch 228 | Loss: 0.0255 | Accuracy: 100.00% Epoch 229 | Loss: 0.0148 | Accuracy: 100.00% Epoch 230 | Loss: 0.0191 | Accuracy: 100.00% Epoch 231 | Loss: 0.0184 | Accuracy: 100.00% Epoch 232 | Loss: 0.0217 | Accuracy: 100.00% Epoch 233 | Loss: 0.0240 | Accuracy: 100.00% Epoch 234 | Loss: 0.0141 | Accuracy: 100.00% Epoch 235 | Loss: 0.0123 | Accuracy: 100.00% Epoch 236 | Loss: 0.0130 | Accuracy: 100.00% Epoch 237 | Loss: 0.0128 | Accuracy: 100.00% Epoch 238 | Loss: 0.0123 | Accuracy: 100.00% Epoch 239 | Loss: 0.0143 | Accuracy: 100.00% Epoch 240 | Loss: 0.0094 | Accuracy: 100.00% Epoch 241 | Loss: 0.0146 | Accuracy: 100.00% Epoch 242 | Loss: 0.0080 | Accuracy: 100.00% Epoch 243 | Loss: 0.0089 | Accuracy: 100.00% Epoch 244 | Loss: 0.0201 | Accuracy: 100.00% Epoch 245 | Loss: 0.0141 | Accuracy: 100.00% Epoch 246 | Loss: 0.0101 | Accuracy: 100.00% Epoch 247 | Loss: 0.0092 | Accuracy: 100.00% Epoch 248 | Loss: 0.0102 | Accuracy: 100.00% Epoch 249 | Loss: 0.0104 | Accuracy: 100.00% Epoch 250 | Loss: 0.0083 | Accuracy: 100.00% Epoch 251 | Loss: 0.0106 | Accuracy: 100.00% Epoch 252 | Loss: 0.0102 | Accuracy: 100.00% Epoch 253 | Loss: 0.0084 | Accuracy: 100.00% Epoch 254 | Loss: 0.0069 | Accuracy: 100.00% Epoch 255 | Loss: 0.0064 | Accuracy: 100.00% Epoch 256 | Loss: 0.0075 | Accuracy: 100.00% Epoch 257 | Loss: 0.0055 | Accuracy: 100.00% Epoch 258 | Loss: 0.0058 | Accuracy: 100.00% Epoch 259 | Loss: 0.0089 | Accuracy: 100.00% Epoch 260 | Loss: 0.0072 | Accuracy: 100.00% Epoch 261 | Loss: 0.0058 | Accuracy: 100.00% Epoch 262 | Loss: 0.0055 | Accuracy: 100.00% Epoch 263 | Loss: 0.0058 | Accuracy: 100.00% Epoch 264 | Loss: 0.0045 | Accuracy: 100.00% Epoch 265 | Loss: 0.0053 | Accuracy: 100.00% Epoch 266 | Loss: 0.0049 | Accuracy: 100.00% Epoch 267 | Loss: 0.0043 | Accuracy: 100.00% Epoch 268 | Loss: 0.0049 | Accuracy: 100.00% Epoch 269 | Loss: 0.0043 | Accuracy: 100.00% Epoch 270 | Loss: 0.0058 | Accuracy: 100.00% Epoch 271 | Loss: 0.0038 | Accuracy: 100.00% Epoch 272 | Loss: 0.0045 | Accuracy: 100.00% Epoch 273 | Loss: 0.0055 | Accuracy: 100.00% Epoch 274 | Loss: 0.0041 | Accuracy: 100.00% Epoch 275 | Loss: 0.0040 | Accuracy: 100.00% Epoch 276 | Loss: 0.0034 | Accuracy: 100.00% Epoch 277 | Loss: 0.0048 | Accuracy: 100.00% Epoch 278 | Loss: 0.0048 | Accuracy: 100.00% Epoch 279 | Loss: 0.0048 | Accuracy: 100.00% Epoch 280 | Loss: 0.0035 | Accuracy: 100.00% Epoch 281 | Loss: 0.0036 | Accuracy: 100.00% Epoch 282 | Loss: 0.0044 | Accuracy: 100.00% Epoch 283 | Loss: 0.0028 | Accuracy: 100.00% Epoch 284 | Loss: 0.0028 | Accuracy: 100.00% Epoch 285 | Loss: 0.0034 | Accuracy: 100.00% Epoch 286 | Loss: 0.0027 | Accuracy: 100.00% Epoch 287 | Loss: 0.0035 | Accuracy: 100.00% Epoch 288 | Loss: 0.0033 | Accuracy: 100.00% Epoch 289 | Loss: 0.0023 | Accuracy: 100.00% Epoch 290 | Loss: 0.0028 | Accuracy: 100.00% Epoch 291 | Loss: 0.0024 | Accuracy: 100.00% Epoch 292 | Loss: 0.0035 | Accuracy: 100.00% Epoch 293 | Loss: 0.0023 | Accuracy: 100.00% Epoch 294 | Loss: 0.0024 | Accuracy: 100.00% Epoch 295 | Loss: 0.0023 | Accuracy: 100.00% Epoch 296 | Loss: 0.0021 | Accuracy: 100.00% Epoch 297 | Loss: 0.0023 | Accuracy: 100.00% Epoch 298 | Loss: 0.0034 | Accuracy: 100.00% Epoch 299 | Loss: 0.0027 | Accuracy: 100.00% Epoch 300 | Loss: 0.0041 | Accuracy: 100.00%