1,259 Views
Synopsis
Note that xT denotes the transpose of x, and Ax < b means that the inequality is taken element-wise over the vectors Ax and b. The above objective function is convex if and only if H is positive- semidefinite. The quadprog function expects a problem of the above form, defined by the parameters fH; f; A; b; Aeq; beq; l; u; x0; H and f are required, the others are optional (empty matrix [])
General Formul
Example
rewrite pattern above
Code in matlab
clc;clear all;close all; H = diag([1; 0]); f = [3; 4]; A = [-1 -3; 2 5; 3 4]; b = [-15; 100; 80]; l = zeros(2,1); Aeq = []; Beq = []; u = []; x0 = []; options = optimset('Algorithm','interior-point-convex'); [x,fval] = quadprog(H,f,A,b,Aeq,Beq,l,u,x0,options);
Output
>> x x = 0.0000 5.0000 >> fval fval = 20.0000 >>
We can verify that x∗ = 0; y∗ = 5, with an optimal value 20.